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Abstrllct-A circular piezoelectric inclusion embedded in an infinite piezoelectric matrix is analysed
in the framework of linear piezoelectricity. A closed-form solution is obtained for the case of a far­
field antiplane mechanical load and a far-field inplane electrical load. It is shown that in modeling
cavities. imposing an impermeable boundary condition is a good approximation provided that the
piezoelectric material has high dielectric constant and strong eIectro-elastic coupling. Stress and
electric field concentrations are also studied. It is shown that a high electric field can be induced in
the inclusion under a mechanical load when the matrix and the inclusion are poled in the opposite
directions. The path-independent M-integral ofelastostatics. generalized to take piezoelectric effect
into account. is used to study the energetics of a self-similarly expanding piezoelectric inclusion.

INTRODUCTION

Due to their intrinsic electro-mechanical coupling behavior. piezoelectric materials. par­
ticularly piezoelectric ceramics. have recently been widely used as actuators and sensors in
"smart" materials and structures technology. This paper constitutes a continuing study in
understanding the macroscopic behavior of these materials in the presence of defects such
as cracks. dislocations. cavities and inclusions subjected to mechanical and eIectricalloads
(Parton. 1976; Deeg. 1980; Zhou et al., 1986; Shintani and Minagawa, 1988; Pak,
1990a.b; Shindo and Ozawa, 1990; Sosa. 1991; Suo. 1991; Wang, 1992). Commonly
used piezoelectric materials are ceramics such as lead zirconate titanate (PZT). which are
manufactured through conventional ceramic processing. These ceramics are then subjected
to a poling process (application of strong electric field) that induces piezoelectricity and
anisotropy in the material. The resulting anisotropy can be characterized as transversely
isotropic with the poling direction normal to the isotropic plane. Bleustein (1968) analysed
the antiplane piezoelectric dynamics problem and discovered the existence of Bleustein
waves. He has shown that if one takes the plane normal to the poling direction as the plane
of interest, only the out-of-plane mechanical deformations couple with the inplane electrical
fields. This reduces the problem considerably to a simple potential problem for decoupled
out-of-plane displacement. u:(x.Y), and inplane electric potential. ljJ(x,y). The elastic fields
and the electrical fields are coupled only through the constitutive equations.

The present work was largely motivated by the need to clarify some of the assumptions
made in applying an electrical boundary condition at the interface between the internal
cavity and the surrounding piezoelectric material. In solving previous piezoelectric boundary
value problems, Pak (1990a) used a heuristic physical argument-that a drastic change in
the dielectric constants (about three order of magnitude) occurs across the boundary
between the cavity and the piezoelectric material-in justifying the electric impermeability
condition at the interface. This rendered possible the decoupling of the domains occupied
by the cavity and the piezoelectric material in the mathematical model, which significantly
simplified the problem by allowing only the domain occupied by the piezoelectric material
to be modeled. This is analogous to a thermoelasticity problem in which a heat insulation
boundary condition is assumed to hold on the crack faces or at the rim of a hole. In this
study. such restrictions will be lifted by modeling the electric field inside the hole (vacuum)
as well as in the material. Furthermore. we will consider a more general case by introducing

2403



2404 Y. E. PAK

a piezoelectric inclusion which, in the limiting case of vanishing elastic and piezoekctric
constants. becomes a permeable hole containing free space with electric fields. Invoking
governing equations of piezoelectricity with proper continuity conditions. a fully coupled
two-domain piezoelectric inclusion-matrix problem can be formulated and solved. By
examining the permeable-boundary solution. we can determine the conditions under which
the use of impermeable boundary conditions is justified.

This analysis also enables us to examine the stress and electric field concentrations due
to the presence of an inclusion. This study is useful in designing piezoelectric composites
and in understanding the effects of second-phase particles and voids in piezoelectric
materials. The understanding of electric field concentration can be useful in reducing the
problem of dielectric breakdowns that frequently occur during a poling process. The path­
independent At-integral will be used to study the energetics of a self-similarly growing
circular inclusion (or a cavity) in the presence of both mechanical and electrical load~.

This may be helpful in understanding thermodynamic forces that govern microstructural
evolution and phase transformations in ferroelectric crystals.

During the course of this work, the author discovered that the boundary value problem
considered in this paper has been solved by an alternate method (Honein ct al.. (990).
However. the emphasis of this work is not on demonstrating a novel and ekgant method
of solving boundary value problems but rather on the understanding of interesting electro
clastic coupling behaviors that have not been studied previously.

PIEZOELECTRIC INCLUSION PROBLEM

Consider an infinitely long circular piezoelectric inclusion with a radius" embcdlled
In anolha piezoekctric material, as shown in Fig. I. The matrix and the indusion arc
assullled to have different material properties. but they arc assumed to have the same
m;lterial orientation in that they have both been poled along the :-direction. The matrix.
assulllcd to bc inlinite in all directions, is subjected to a far-lield antiplane shcar. rJ.• = r ..
and a far-field inplanc eledric field. E~ = E.o. A uniform electric field can be indul:ed in a
hOlllogencous piezoclcctric material by applying a constant potential jump across thc
spel:imen. In the configuration shown in Fig. I, only the out-or-plane displacemcnl. Ii:.

wuplcs with the inplane electric fields, Er and Eu. Therefore, if we only consider thc out­
of-planc displacement and the in-plane electric fields sueh that

piezoelectric matrix

x

z

piezoelectric inclusion

Fig. I. Piezoelectric inclusion subjected to far-field antiplanc shear and inplane electric tieili.
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u~O = u~) = 0, U~') = u~i)(r,8). £;.0 = E!jl(r,8), E~i) = ~il(r,8), £:il = 0, (i = M.I).
(I)

the governing equations (Appendix A), in the absence of body forces and body charges.
decouple and simplify to

where V2 is the two-dimensional Laplacian operator

, 02 I 0 I 02

V· == -;--; + - -;- + -2 :In''(Jr· r l.:r r uu·

(2)

(3)

and the superscripts M and I refer to the quantities in the matrix and the inclusion.
respectively. The coupling between the elastic fields and the electrical fields occurs only
through the constitutive equations (Appendix B)

.... li) _ eli) ,,(il eli) E(i) .... (0 - eli) ,,(il eli) E(i)
V:r - 44 I:r - IS r' V;6 - 441:/1 - 15 f!

(4)

where Y~) and Elil are respectively the anti plane shear strains and inplane electric fields.
which are defined as

(i = M, I). (5)

We c:.m obtain the solution to this problem by first expressing the independent variables
In senes.

In the matrix.

,:I.)

u~ (r. () = L [lln,n +b",-II] sin nO.
n-I

In the indusion.

'J)

u~(r. 0) = L !"r' sin nO,
,,- I

~

eJ>M(r, 0) = L [cnr" +£1",-"1 sin nO.
n-l

oX)

eJ>1(r,O) = L gnr" sin nO,
n- I

(6)

(7)

where a". b". CII • d", f,. and y" arc constant coefficients that are to be determined from the
far-field conditions

and the continuity conditions across the matrix-inclusion interface

(8)

at r = a. (9)

The solution is obtained by solving a system of six algebraic equations arising from
the conditions given in (8) and (9).
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\1 [ dl
]Ey = - e I + ,2 cos e

In the inclusion,

DM- ["M a 0\1. + e~hl -e~'d,] ey - .. 15 I - ... 11( 1 , COS •,.
(10)

1 J . e ",I . 0 I J' 1 JU: = I' Sin , 'I' = gl' SIn , 'I:r = 1 Sin 0, '1:11 = 1 cos ()

E~ = -gl sin e, E~ = -gl cos e, (1:r = [eLII +e\5gd sin 0, (1:11 = [eLII +e\5gl1 cos 0

D:=[eldl-ellgJ!sinO, D1;=[e\dl-eLgJ!cosf), (II)

where

(1 2('1'1 [,.M,I c.I "M]+C' [(.M + .1 )(,.M £.1 )+( M)2 (1 )211d I = ... _1: ....!':.:~.:2 ~~. 44.~.~~_._1 ~ H c44 "1 I - 'I I e I ~. - :11 i.
Ll

( 12)

As is well known in elastostatics and electrostatics, the strain and the electric field are
constant in the inclusion. In the absence of mechanical fields, these solutions reduce to the
classical electrostatic solution presented, for example, in Fano et at. (1960). In the absence
of electrical fields, on the other hand. these solutions reduce to the classical antiplane
c1astostatic inclusion problem. Contours of constant electric potential and constant (1:r

stress are plotted in Figs 2(a. b). respectively.

ELECTRICAL BOUNDARY CONDITION

Unlike elastic fields. electric fields can permeate through vacuum and can exist inside
the cavity of a dielectric or a piezoelectric material. This requires modeling of electric fields
even in the absence of material inside the cavity. However. by carefully considering the
interactions that take place at the interface, and by taking advantage of the fact that the
piezoelectric materials have high dielectric constants and strong electro-elastic coupling, one
can circumvent modeling the electric fields inside the cavity by imposing an impermeability
condition on the boundary. The continuity ofthe normal component ofelectric displacement
and the traction-free boundary condition require the following relations to hold on the
boundary at r = a:
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Fig. 2. Contours of constant (a) dl..-ctric potential tP. (b) shear stress (I".

(13)

We are letting e\ J be the same as eo. the permittivity of free space, since the cavity is assumed
to be "filIed" with vacuum. Solving for the ratio of the electric fields just inside and outside
the permeable hole. we obtain

Substituting typical values for PZT ceramic (Appendix C), we find that

EMI
£
'. = 3.8 X 10- 4 « I.
, r-a

(14)

(15)

Ifwe assume that E: is of the same order ofmagnitude as Eoo , we can make an approximation
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that E;-tlr.a ;: O. This enables us to impose D~lr.a ::::: 0 (since Y~lr-u ::::: 0 from the traction­
free condition) and ignore the field inside the hole. We remind the reader that the expression
given in eqn (14) has been derived solely from the boundary and continuity conditions
and not from the solution to the boundary value problem. Therefore. we can ascertain only
the relative magnitudes of the normal components of the electric field at the boundary. In
order to show that the absolute value of E;-tlr=" is small. i.e. E;-tlr.u« E:(.. we need th~

solution to the permeable hole problem. This can be obtained from the piezoelectric
inclusion solution by letting d4 == e\ 5 == O. Using the permeable hole solution. we arrive at

( 16)

We can now state that for typical piezoceramics. E';" is indeed very small compared to E--x;.
This ex.pression indicates. as does eqn (14). that there are two independent reasons for the
normal component of an electric field to be negligibly small just inside the piezoelectric
material at the boundary of a cavity. namely. (I) a high relative dielectric constant.
Er,/l:o» I. and (2) a strong piezoelectric coupling. (er5)Z/(£oc~4)>> I. This point is clearly
illustrated in Fig. 3. We can conclude from this study that in electro-elastic modeling of
piezoelectric materials. one can impose D' n ::::: 0 on the cavity boundary without introducing
serious errors. provided that the material has a high dielectric constant and strong piezo­
electric coupling. There exists. however. an electric field inside the cavity. which is about
twice the applied electric field. This jump in the normal component of the electric fIeld
across the cavity-matrix interface is due to the existence of bound surface polarization
charges. One should exercise care in applying the D' n ::::: 0 condition on a very slender
cavity (such as a crack) in c1ectrostrictive materials. Readers arc referred to McMeeking
(1989) for a detailed discussion.

STRESS AND ELECTRIC FIELD CONCENTRATIONS

Equations (10) show that the maximum stress in the matrix can occur at 0 ::::: 0 or at
0::::: n12. depending on the sign of the (c~hl +e~5t11) term. It is clear from examining the
expressions for b I and til that this depends on various material parameters and should be
determined case by case. Likewise, the maximum electric field in the matrix is determined
by the sign of the til term. At the same time. all the elastic and electrical fields arc constant
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Fig. 3. Vanishing of E,'" at the boundary as t'~, and t~', are independently increased.
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inside the inclusion. By taking limits on various parameters in the piezoelectric matrix­
inclusion solution. we can study the stress and electric field concentrations for the following
cases.

Case I
Elastic dielectric inclusion (e\ s = 0) in elastic dielectric matrix (e~s = 0). Since there is

no piezoelectric coupling in this case. the elastic fields and the electrical fields are decoupled.
The maximum shear stress in the matrix at the interface and in the inclusion are

(17)

For the case of a hole (cL = 0), we reproduce the elastostatic antiplane shear stress
concentration of two at () = O. When the matrix is stiffer than the inclusion. c~ > cL. the
maximum stress concentration occurs in the matrix at () = O. However. when the inclusion
is stiffer than the matrix. cL > c~. the maximum stress concentration occurs at () = 1[/2
where the shear stress O'~ in the matrix is equal to the constant shear stress 0':.• of the
inclusion. This shifting of the maximum stress location is also observed in the plane strain
case (Goodier. 1933). The shear stress 0':. along the lines () =0 and () = 7[/2 are respectively
plotted in Figs 4(a. b) as a function of the non-dimensional coordinate rIa for various ratios
of the elastic constants c~/cL.

Analogously, the electric field concentration in the matrix at the interface and in the
inclusion is

(18)

The electric field concentration in the matrix at 0 = 0 as well as inside the inclusion
approaches two as the dielectric constant for the matrix becomes much larger than that for
the inclusion. A cavity. for example, in a material with high dielectric constant can experience
twice the applied electric field. Therefore, arching (dielectric breakdown of air) can occur
inside the cavity when subjected to a high electric field during a poling process.

Case 2
Piezoelectric inclusion in elastic matrix (e~ = 0, e~1 = 0). Piezoelectric composite sen­

sors are often made in this configuration where a piezoelectric rod is embedded in an elastic
matrix (usually polymers). Our interest in this case is to maximize the sensitivity of the
sensor, i.e. to maximize the field produced in the piezoelectric inclusion due to the mechanical
deformation of the surrounding matrix. The electric field produced inside the piezoelectric
inclusion is

(19)

This expression shows non-monotonic dependence of the induced electric field on e\ s. This
non-monotonic dependence is plotted in Fig. 5 for various ratios of the elastic constants
C~/d4' The maximum sensitivity can be achieved by matching the piezoelectric constant
of the inclusion to be

(20)

This is an interesting phenomenon in that maximizing the piezoelectric constant alone will
not necessarily maximize the sensitivity of the sensor; it has to be matched with the rest of
the material parameters.
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Case 3
Elastic dielectric inclusion (e\ s = 0) in piezoelectric matrix. In this case, the inclusion

models a non-piezoelectric secondary-phase particle or a fiber in a piezoelectric material.
The stress and the electric field concentrations induced by a dielectric inclusion are

(21 )

These expressions show that the concentration of stress and electric field can be induced
independently by the mechanical or the electrical load. For the case of a permeable hole
(cL = 0). the stress concentration. (1~(a. 0)/,,,,. is two. and is independent of the applied
electric field. At the same time. the electric field concentration becomes

(22)

In the limit of dielectric constant for the matrix becoming much greater than that of the
inclusion. I:~, » ell \. the electric field concentration approaches two just as in Case I.

Case 4
Piezoelectric inclusion in piezoelectric matrix. In this most general case, the stress and

electric field concentration become

E~(a.O) = E~. = -91 (23)

where a{. hi. c,. til and 9, arc given in eqn (12). It is interesting to note that a uniform
stress field results when the elastic constant and the piezoelectric constant are the same for
the inclusion and the matrix. However. a uniform electric field results only when all three
constants (elastic. dielectric and piezoelectric) are matched. Stress concentrations in the
matrix at 0 = 0 and 0 = n/2 with t., = 5 X 107 N m- 2 and Err; = 106

, O. _106 V m- I are
respectively plotted in Figs 6(a. b) as a function of the ratio of piezoelectric constants,
e~/eIIS' while letting c~ = C~4 = 3.53 X 10 10 N m- 2

, era = e\ 1= 1.51 X 10- 8 C V-I m- I

and ell S = 10.0 C m - 2. The negative electric field implies the reversal of the applied field
and the negative piezoelectric constant implies the reversal of the poling direction. As plots
indicate. the stress concentration can be greater than two (maximum limit for purely elastic
case) when an electric field is applied. In Fig. 7(a), the electric field concentration is plotted
as a function of the ratio of dielectric constants for the matrix and the inclusion while
holding C~4 = d4 = 3.53 X \0'0 N m- 2

, ers = e\s = 17.0 C m- 2 and ell = 1.51 x 10- 8 C
V- I m - I. It is shown that the mechanical load has no effect on the electric field concen­
tration. which approaches two for a large 6\1/e\ I ratio. The effect of the piezoelectric
constant on electric field concentration is plotted in Fig. 7(b). Here too it is shown that the
electric field concentration can be greater than two (maximum limit for purely electrical
case) when a mechanical load is applied.
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A more interesting phenomenon can be observed, for example, when we let ei'\ = el15

(17.0 Cm-~) and e~~ = e\ I (1.51 x 10- g C V-I m - I). En this case, the electric field in the
matrix at 0 = 0 and in the inclusion is

(24)

Figure 8(a) with cL = 3.53 x 10 ION m - 2 shows that the electric field concentration increases
dramatically as the shear modulus of the piezoelectric matrix becomes smaller. This is not
surprising in examining the expression given in eqn (24), which contains the C~4 term in the
denominator.

Similarly, a high electric field concentration behavior can be observed when we let
c~~ = d4 (3.53x 10 10 N m- 2), and e~1 = ell (1.51 x IO-~ C V-I m- I

). The electric field
concentration for this case is
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One can maximize the electric field concentration by minimizing the denominator.. This can
be achieved by letting the magnitude of piezoelectric constants for the inclusion and the
matrix be the same but opposite in sign (same material but poled in opposite directions)
such that e~~+e\ 5 = O. Electric field induced in the inclusion when the mechanical load of
r L = - 106 N m - =is applied is shown in Fig. 8(b). with e\ s= 17 C m -~. Plots show a case
where either the elastic constant or the dielectric constant is lowered by a factor of 10. a
case where both of them arc lowered by a factor of 10. and a case where the pie7.oe1cctric
constant is increased by a factor of 10. The figure shows high electric field concentration at
l.'~I/l.'\5= - I. At this ratio. in the absence of an applied electric field (E.L) = 0). the electric
field concentration becomes

(26)

This shows that we can increase the induced electric field by decreasing the elastic and

SAS 29: 19·G
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dielectric constants and increasing the piezoelectric constant as Fig. 8(b) demonstrates. If
we can fabricate piezoelectric materials with lower elastic and dielectric constants but a
higher piezoelectric constant than what is currently available, then it is feasible that this
phenomenon can be utilized to build a very sensitive sensor. It is to be emphasized that this
phenomenon occurs for the piezoelectric matrix-piezoelectric inclusion composite system
only when e~s = - ell s (matrix and inclusion poled in opposite directions). Solving for E,.
and Y:y in terms of u:y and Dy and letting Dy = 0, we can find the electric field induced in a
homogeneous piezoelectric material due to a mechanical load:

(27)

The coefficient multiplying r.., is effectively a 9 I S constant (a piezoelectric constant that
relates stress to electric field) that cannot be made arbitrarily large by decreasing CH and
&11 because we have the e I s term in the denominator. The ratio of the mechanically induced
electric fields in an oppositely poled inclusion and a homogeneous piezoelectric material is
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(28)

Substituting in values for typical piezoceramics, the above expression shows that oppositely
poled matrix-inclusion configuration exhibits about 50% higher sensitivity than a homo­

geneous material.

PATH-INDEPENDENT M-INTEGRAL

The path-independent M-integral. one of the three conservation laws arising in linear
elastostatics, was discovered independently by Gunther (1962) and Knowles and Sternberg
(1972). It was later interpreted by Budiansky and Rice (1973) to be the energy-release rate
for a self-similarly expanding defect completely enclosed by the contour of the integral. We
can generalize this path-independent integral to include piezoelectric effect by employing a
simple method introduced in Eischen and Herrmann (1987). Following their method of
taking divergence of the moment of the Lagrangian density (in this case electric enthalpy
density II). we obtain

(29)

where tI = 2 for two dimensions and tI = 3 for three dimensions. t, = (1i/tll is the traction
vector. and ti, is the outer unit normal to the surface S. Evaluating this expression on a
contour surrounding the inclusion and taking various limits on the material parameters we
ohtain the following results.

Case I
Elastic dielectric inclusion in elastic dielectric matrix. By letting e~ = ell ~ = O. we can

decouple the mechanical and electrical fields and obtain

(30)

The first term represents the change in the total elastic energy as the inclusion expands self­
similarly under the mechanical load. The second term represents the release of the total
electrical energy as the inclusion expands self-similarly under the electrical load. For the
mechanical case. the energy released is positive when the matrix is stiffer than the inclusion.
indicating that the system prefers (the total system energy is lower) to have a bigger inclusion
when the inclusion is softer. However, in the electrical case. the system prefers to have a
smaller inclusion when the dielectric constant of the matrix is greater than that of the
inclusion. This agrees with the well known electrostatics theory that the total electrical
energy of the system decreases as the effective dielectric constants increase. This phenom­
enon is also observed in crack analysis. which showed that the electric field tends to retard
the crack growth (Pak. 1990a). This effect can be demonstrated in a simple experiment in
which a dielectric slab partially inserted between two charged parallel capacitor plates gets
drawn in to fill the remaining gap. increasing the overall effective dielectric constant of the
capacitor (Halliday and Resnick. 1966). It is interesting to note that the mechanical energy­
release rate is at a maximum when CZ'4 = (j2+ l)cL. and the electrical energy-release rate
is maximum when I:~ll = (j2-I)I:\ I'
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Cast.' ~

Impermeable hole (('~-l = 0, ell' = O. 1: 1
! = 0) in piezoelectric matrix. Since we have

shown that the impermeable boundary condition at the rim of the hole is a good approxi­
matll.m, we can evaluate the M·integral using the solution for an impermeable hole in a
piezoelectric matrix. For this case. we obtain

(31 )

Again we observe that the electric field df..:ct counteracts the elastic effect and tends to
inhibit self·similar growth of the hole. On..: is reminded that this force is not an actual
force acting on the material but rather a generalized thermodynamic force acting on the
configurational defect such as a hole. However. it may warrant a further study to see
whether this force has a physical manifestation in the surface charges that appear on the
rin~ of the hole. which may have a net attractive force opposing the hole from getting bigger.
USing typical values for the material constants with r, = 5 X 10 7 N m - ~ (maximum tensile
strength for some piezoceramics) and £ c = 10" V m I (near poling field). the negative
electrical term decreases the value of M by about 33"".

Cast' 3

PiezoelL:ctric inclusion In pie/oelectric matrix. III this general case. the At-integral
beconll:s

whcre till: constants arc given in eL(n (12). To study the ell'ccts or each material parameters
nn the energy-release rate. the AI-inkgral is plotted in hgs 9(a c) 1'01' the cases of applied
mech;lI1iL';d load. electrical load. and both 11ll:chaniL';d and dectrical loads. The same
material const;tnts arc used as in the stress and elL:ctric field concentration study considered
in the previous section. Figures 9(a. c) clearly demonstrate the point that the material
prcl'crs to have larger. elastically sort (more compliant) and larger. electrically soft (more
polarizahlL:) inclusion.

As shnuld he the case. the value of the At-integral is lero when evaluated on a contour
inside the inclusion where all the Jields arc constant and arc independent or the characteristic
IL:ngth a.

CONCLU[)t~(i RL\l\R"'S

By taking the plane of analysis to he normal to the poling axis of a piezocerarnic
material. we were ahle to analyse the piezoelectric anti plane problem in which a circular
pielllelectric inclusion embedded in a piezoelectric matrix is suhjected to a far-field mech­
anical and an electrical load. It was shown that both stress and electric field concentration
can occur duc to the mismatch in the material constants. It was also shown that when an
internal cavity problem in piezoelectric materials is analysed. the impermeable boundary
condition at the interface between the material and the cavity is a good approximation.
provided that the material has strong e1ectr~-e1asticcoupling and high dielectric constants.
It was shown that even in the static case. "tuning" of the material constants is required to
produce maximum sensitivity for the piezoelectric composite sensor. The phenomena of
very high electric field concentration that can be induced by tailoring material parameters
is rcvealed. which can lead to a development of very sensitive sensors. The generalized
path·independent M-integral showed that the material favors larger inclusion under the
mechanical load when the elastic constant orthe inclusion is lower than the matrix. However.
in the case of electric field loading. the material favors smaller inclusion when the dielectric
constant of the inclusion is less than that of the matri\. These effects may contribute to
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Fig. 9. Self·similar e~pansion force as a function of the ratios of (a) elastic constants. (b) piezoelectric
constants, (c) diel<.-ctric constants.
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thermodynamic forces that influence the microstructural evolution and phase trans­
formation in ferroelectric and piezoelectric materials.
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APPENDIX A

Governing equations for a linear clastic piezoelel."tric material oc<:upying region V bounded hy surLl<:c S .::an
be derived from the following Hamilton's principle (Tierst.::n. 196<):

(AI)

where f. is the body for<:e, It, is the displacement. i/. is the body <:harge. T, is the apphed surfal."e lra,ction. i/, is the
applied surface charge and ,I> is the electric potential whose negative of the gradient IS the elel."tnc held.

H, = -.p.,.

For linear elastic pic7.0electric materials, the electric enthalpy density is cxpressed as

(1\2)

(A3)

whcrc C,,,,, arc the elastic moduli measured in a constant electric field. £,/ arc thc dielectric constants measured at
constant strain. e"" arc thc piezoelectric constants. and 5" is the strain tensor.

(A~)

Thc variational formulation provides the following results:
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Governing field equations.

boundary conditions,

and constitutive equations.

where n, is the outer unit normal vector to S.

2419

(AS)

(A6)

(A7)

APPENDIX 8

The constitutive relations for poled piezoelectric ceramic with x: as the poling axis are of the form (Berlincourt
er 01., 1964):

(J'C.'f C,I CI2 CIJ 0 0 0 S.u 0 0 ell

(1" CI2 C" C,l 0 0 0 s,.¥ 0 0 (')1

(1" C,l CIJ ell 0 0 0 s:: 0 0 ell m0 0 0 0 0 2s:: 0 0
(81)

(1:11 C•• e"
(1:.'( 0 0 0 0 C.. 0 2s... e" 0 0

(1 .. 0 0 0 0 0 !(<",,-<"/1) 2,.,,, 0 0 0

&n

0

:]
t ..n[' 0 0 e" ['" 0

']nr.n (82)
0==0 0 0 (-" 0 + 0 tIl o E..
0: ('\I 0 0

2t"
0 0 £.'.1 E:ell eJJ

21:,.

2£"

APPENDIX C

Material properties for PZT-SH ceramic (Deeg, 1980).

<"" == 1:!.6 X 10 10 N m -2, <"/1 = 5.5x 10 '0 N m -2, e,l == S.) x 10 '0 N m -2, Cll = 11.7 X 10 '0 N m- 2

<".. =).S3xIO IO Nm- 2
, ell=-6.SCm- 2, eJJ=23.3Cm- 2, eI J =17.0Cm- 2

ell = I.SlxlO-·Cy-l m -I, eJJ = 1.30xlO- I Cy-l m-l.

Permittivity of free space:


