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Abstract—A circular piezoelectric inclusion embedded in an infinite piezoelectric matrix is analysed
in the framework of linear piezoelectricity. A closed-form solution is obtained for the case of a far-
field antiplane mechanical load and a far-field inplane electrical load. It is shown that in modeling
cavities. imposing an impermeable boundary condition is 2 good approximation provided that the
piezoelectric material has high dielectric constant and strong electro—elastic coupling. Stress and
electric field concentrations are also studied. It is shown that a high electric field can be induced in
the inclusion under a mechanical load when the matrix and the inclusion are poled in the opposite
directions. The path-independent M-integral of elastostatics, generalized to take piezoelectric effect
into account, is used to study the energetics of a self-similarly expanding piezoelectric inclusion.

INTRODUCTION

Due to their intrinsic electro-mechanical coupling behavior, piczoclectric materials, par-
ticularly piezoelectric ceramics, have recently been widely used as actuators and sensors in
“smart” materials and structures technology. This paper constitutes a continuing study in
understanding the macroscopic behavior of these materials in the presence of defects such
as cracks, dislocations, cavities and inclusions subjected to mechanical and electrical loads
(Parton, 1976; Dceg, 1980; Zhou et al., 1986; Shintani and Minagawa, 1988; Pak,
1990a.b: Shindo and Ozawa, 1990; Sosa, 1991; Suo, 1991; Wang, 1992). Commonly
used piczoelectric materials are ceramics such as lead zirconate titanate (PZT), which are
manufactured through conventional ceramic processing. These ceramics are then subjected
to a poling process (application of strong electric field) that induces piezoelectricity and
anisotropy in the material. The resulting anisotropy can be characterized as transversely
isotropic with the poling direction normal to the isotropic plane. Bleustein (1968) analysed
the antiplane piczoelectric dynamics problem and discovered the existence of Bleustein
waves. He has shown that if one takes the plane normal to the poling direction as the plane
of interest, only the out-of-plane mechanical deformations couple with the inplane electrical
fields. This reduces the problem considerably to a simple potential problem for decoupled
out-of-plane displacement, u.(x, y), and inplane electric potential, ¢(x, y). The elastic fields
and the electrical fields are coupled only through the constitutive equations.

The present work was largely motivated by the need to clarify some of the assumptions
made in applying an electrical boundary condition at the interface between the internal
cavity and the surrounding piezoelectric material. In solving previous piezoelectric boundary
value problems, Pak (1990a) used a heuristic physical argument—that a drastic change in
the dielectric constants (about three order of magnitude) occurs across the boundary
between the cavity and the piezoelectric material—in justifying the electric impermeability
condition at the interface. This rendered possible the decoupling of the domains occupied
by the cavity and the piezoelectric material in the mathematical model, which significantly
simplified the problem by allowing only the domain occupied by the piezoelectric material
to be modeled. This is analogous to a thermoelasticity problem in which a heat insulation
boundary condition is assumed to hold on the crack faces or at the rim of a hole. In this
study, such restrictions will be lifted by modeling the electric field inside the hole (vacuum)
as well as in the material. Furthermore, we will consider a more general case by introducing
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a piezoelectric inclusion which, in the limiting case of vanishing elastic and piezoelectric
constants, becomes a permeable hole containing free space with electric fields. Invoking
governing equations of piezoelectricity with proper continuity conditions. a fully coupled
two-domain piezoelectric inclusion-matrix problem can be formulated and solved. By
examining the permeable-boundary solution. we can determine the conditions under which
the use of impermeable boundary conditions is justified.

This analysis also enables us to examine the stress and electric field concentrations duc
to the presence of an inclusion. This study is useful in designing piezoelectric composites
and in understanding the effects of second-phase particles and voids in piezoelectric
materials. The understanding of electric field concentration can be useful in reducing the
problem of dielectric breakdowns that frequently occur during a poling process. The path-
independent A-integral will be used to study the energetics of a self-similarly growing
circular inclusion {or a cavity) in the presence of both mechanical and electrical loads.
This may be helptul in understanding thermodynamic forces that govern microstructural
evolution and phase transformations in ferroelectric crystals.

During the course of this work, the author discovered that the boundary value probiem
considered in this paper has been solved by an alternate method (Honein ¢r al., 1990).
However, the emphasts of this work is not on demonstrating a novel and elegant method
of solving boundary value problems but rather on the understanding of interesting clectro
elastic coupling behaviors that have not been studied previously.

PIEZOELECTRIC INCLUSION PROBLEM

Consider an infinitely long circular piezoelectric inclusion with a radius ¢ embedded
in another piczoelectric material, as shown in Fig. 1. The matrix and the inclusion are
assumed to have different material properties, but they are assumed to have the same
material orientation in that they have both been poled along the z-dircction. The matrix,
assumed to be infinite in all directions, is subjected to a far-ticld anuplane shear, ., =1, |
and a far-ficld inplane clectric field, £, = £,,. A uniform clectric ficld can be induced in a
homogencous piczoclectric material by applying a constant potential jump across the
specimen. In the configuration shown in Fig. [, only the out-of-planc displacement. .,
couples with the inplane electric fields, E, and E,. Therefore, if we only consider the out-
of-plance displucement and the in-plane electric fields such that

piezoelectric matrix

y
r
x
z

piezoelectric inclusion

Fig. I. Piczoclectric inclusion subjected to far-field antiplane shear and inplane electric field.
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W=u' =0, u=u(r,0). EO=E"0), E=E(r8), E"=0 (i=M.lI).
(H

the governing equations (Appendix A), in the absence of body forces and body charges,
decouple and simplify to

Vil =0, VW =0, (i=M,D), )
where V2 is the two-dimensional Laplacian operator
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and the superscripts M and [ refer to the quantities in the matrix and the inclusion.
respectively. The coupling between the elastic fields and the electrical fields occurs only
through the constitutive equations (Appendix B)

o.(:) — C(l) (:) (J)E(u) o.(a} — c‘.‘ly("—e“’ Eér)
D(-) —_ e(-) ?(”+£(')E:'), D,(,') - e”s)’(b) "’55" (i = M, l)‘ (4)

where ) and E" are respectively the antiplane shear strains and inplane electric ficlds,
which are defined as

oul? ; | ault ; Jp'? ) i 0([)“’ i
= gy = e O gl 100 oM )

We can obtain the solution to this problem by first expressing the independent variables
in scrics.
In the matrix,

w(r,0) =Y (4" +b,r ") sinnd, ¢M(r,0) = Z [e,r™+d,r "] sin a0 (6)

n=1 na=

In the inclusion,

u(r,0) =3 fir'sinnd, ¢'(r,0)= Y g, sinnd, (N

nw= | ne=|

where a,, b,, ¢,. d,, f, and g, are constant coefficients that are to be determined from the
far-field conditions

Ty =T asr— o (8)
ENY=E, ’

and the continuity conditions across the matrix-inclusion interface

uM =4
oM =g,
M = ¢ atr =a. 9)
DM - DI

The solution is obtained by solving a system of six algebraic equations arising from
the conditions given in (8) and (9).
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In the matrix,

, b d,
u?":[a,r«k-r—‘:]sm&' ¢M=[c,r+ :}smﬁ 7},’=[a.~é—f]sin0
pE:
b( d d
‘,’_:‘,}x[a.-{—;; cos®, EM= — C|~—;§ sinf, El= —|c/+ f]cos@
;3
M M
‘ Casb +ellsd | . b sd,
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D, —[f’nsfh"&ncl— T :]sm(l D$‘=[¢'T'sa|-6?‘;c1+—~——~w‘5 L cos 0.
i

r

(10)
In the inclusion,
u, = firsing, @' =g,rsinf, y, = fising, = f cosd
E'= —g,sin0, E}= —g,cos0, o) =[chifi+elsg]sind, ol =[cli S, +e15g,]cos 0

D! =[e}s fi—¢lig/]sin0, D, =[els f1—¢l,g:] cos O, (n
where
tn+cbldﬁl:t
I L SRy OF
Caq
b a 1‘1([ |s—’~’1s+((u (44)(}II+III)I+7[ { xs“n““'zs*ﬁ
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d —q-h“l[‘-utn Cu‘w]‘*‘ﬁ[(‘u‘*‘(u)(‘n*11|)+(l|<) "'(‘15) i;
Sl
A
2(“&[‘44(‘H’Hx|)+€'ls(¢1s+i:5)}+€:[ sfn“(’::sfn}
fi= el
g, = 2{a[cdiel s —chaels]+ o [(B + el +els(els + i)}
| = Lissd
A

(C +C44)(fn+bn}+(‘—(s+€’ts} (12)

As is well known in elastostatics and electrostatics, the strain and the electric field are
constant in the inclusion. In the absence of mechanical fields, these solutions reduce to the
classical electrostatic solution presented, for example, in Fano er al. (1960). In the absence
of clectrical fields, on the other hand, these solutions reduce to the classical antiplane
clastostatic inclusion problem. Contours of constant electric potential and constant o,
stress are plotted in Figs 2(a, b), respectively.

ELECTRICAL BOUNDARY CONDITION

Unlike elastic fields, electric fields can permeate through vacuum and can exist inside
the cavity of a dielectric or a piezoelectric material. This requires modeling of electric fields
even in the absence of material inside the cavity. However, by carefully considering the
interactions that take place at the interface, and by taking advantage of the fact that the
piezoelectric materials have high dielectric constants and strong electro~elastic coupling, one
can circumvent modeling the electric fields inside the cavity by imposing an impermeability
condition on the boundary. The continuity of the normal component of electric displacement
and the traction-free boundary condition require the following relations to hold on the
boundary at r = a:
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We are letting £}, be the same as ¢, the permittivity of free space, since the cavity is assumed

to be “filled” with vacuum. Solving for the ratio of the electric fields just inside and outside
the permeable hole, we obtain

. (14)
E e e +el/cl
Substituting typical values for PZT ceramic (Appendix C), we find that
E)"
—ET’_G=3.8><IO“ « 1. (15)

If we assume that £} is of the same order of magnitude as £,,, we can make an approximation



1408 Y. E. Pax

that EM|,., = 0. This enables us to impose DM|,_, = 0 (since ¥, _, = 0 from the traction-
free condition) and ignore the field inside the hole. We remind the reader that the expression
given in eqn (14) has been derived solely from the boundary and continuity conditions
and not from the solution to the boundary value problem. Therefore, we can ascertain only
the relative magnitudes of the normal components of the electric field at the boundary. In
order to show that the absolute value of EM|,_, is small, i.e. EM|, ., « E,., we need the
solution to the permeable hole problem. This can be obtained from the piezoelectric
inclusion solution by letting ¢}, = e!s = 0. Using the permeable hole solution. we arrive at

EIM Irau 260

E.  el+ea+(eM)elt

sinf ~7.6x107* « 1. (16)

We can now state that for typical piezoceramics, E}' is indeed very small compared to £, .
This expresston indicates, as does eqn (14), that there are two independent reasons for the
normal component of an electric field to be negligibly small just inside the piezoelectric
material at the boundary of a cavity, namely. (1) a high relative dielectric constant,
eM/eq, > 1, and (2) a strong piezoelectric coupling. (e}$)*/(gocth) > 1. This point is clearly
illustrated in Fig. 3. We can conclude from this study that in electro—elastic modeling of
piezoelectric materials, one canimpose D -n = 0 on the cavity boundary without introducing
serious errors, provided that the material has a high dielectric constant and strong piezo-
clectric coupling. There exists, however, an electric ficld inside the cavity, which is about
twice the applied electric ficld. This jump in the normal component of the electric ficld
across the cavity-matrix interface is due to the existence of bound surface polarization
charges. One should exercise care in applying the D-n = 0 condition on a very slender
cavity (such as a crack) in clectrostrictive materials. Readers are referred to McMeeking
(1989) for a detailed discussion.

STRESS AND ELECTRIC FIELD CONCENTRATIONS

Equations (10) show that the maximum stress in the matrix can occur at § = 0 or at
0 = n/2, depending on the sign of the (¢¥4h, +¢Ysd)) term. It is clear from examining the
expressions for b, and d, that this depends on various material parameters and should be
determined case by case. Likewise, the maximum electric ficld in the matrix is determined
by the sign of the d, term. At the same time, all the elastic and electrical fields are constant
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Fig. 3. Vanishing of £ at the boundary as €} and ¢} arc independently increased.
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inside the inclusion. By taking limits on various parameters in the piezoelectric matrix-
inclusion solution, we can study the stress and electric field concentrations for the following
cases.

Case |

Elastic dielectric inclusion (e} = 0) in elastic dielectric matrix (els = 0). Since there is
no piezoelectric coupling in this case, the elastic fields and the electrical fields are decoupled.
The maximum shear stress in the matrix at the interface and in the inclusion are

6%(a,0) = ——ZC—Ti——r o a.n2) =0l = ——zci—t (n
=9 ) C'::+Cl44 L r ) ] v Cn+cl44 P

For the case of a hole (c¢!s = 0). we reproduce the elastostatic antiplane shear stress
concentration of two at 8 = 0. When the matrix is stiffer than the inclusion, ¢§% > cl.. the
maximum stress concentration occurs in the matrix at 8 = 0. However, when the inclusion
is stiffer than the matrix, c“ > ci%. the maximum stress concentration occurs at § = n/2
where the shear stress ¢! in the matrix is equal to the constant shear stress o), of the
inclusion. This shifting of the maximum stress location is also observed in the plane strain
case (Goodier. 1933). The shear stress ., along the lines @ = 0 and § = n/2 are respectively
plotted in Figs 4(a, b) as a function of the non-dimensional coordinate r/a for various ratios
of the elastic constants ¢'y/cls.

Analogously, the electric field concentration in the matrix at the interface and in the
inclusion is

26l

M = R .
Ey" (a,0) ,Iw + E‘,o. (18)

The electric ficld concentration in the matrix at 0 =0 as well as inside the inclusion
approaches two as the diclectric constant for the matrix becomes much larger than that for
the inclusion. A cavity, for example, in a material with high dielectric constant can experience
twice the applied electric field. Thercfore, arching (diclectric breakdown of air) can occur
inside the cavity when subjected to a high electric field during a poling process.

Case 2

Piezoelectric inclusion in elastic matrix (e} = 0, £}} = 0). Piezoelectric composite sen-
sors are often made in this configuration where a piezoelectric rod is embedded in an elastic
matrix (usually polymers). Our interest in this case is to maximize the sensitivity of the
sensor, i.¢. to maximize the field produced in the piezoelectric inclusion due to the mechanical
deformation of the surrounding matrix. The electric field produced inside the piezoelectric
inclusion is

2¢!
E'=— 13 To. 19
" T e (ot che) (%

This expression shows non-monotonic dependence of the induced electric field on ¢} 5. This
non-monotonic dependence is plotted in Fig. 5 for various ratios of the elastic constants
c¥y/css. The maximum sensitivity can be achieved by matching the piezoelectric constant
of the inclusion to be

els = /el (e +clo). (20)

This is an interesting phenomenon in that maximizing the piezoelectric constant alone will
not necessarily maximize the sensitivity of the sensor; it has to be matched with the rest of
the material parameters.
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Case 3
Elastic dielectric inclusion (e} = 0) in piezoelectric matrix. In this case, the inclusion

models a non-piezoelectric secondary-phase particle or a fiber in a piezoelectric material.
The stress and the electric field concentrations induced by a dielectric inclusion are

2t [N +2by + (1) 2N — cha)] — Exchael[(els)* + el ]}

7:3(4.0) = 4 ) @R+ e+ @)
EJ’(a, 0) = 2[rxcluer|45 +E, (Crf.s +C!u)((e!|"5)2 + Ck‘a ghldl )] (21)

CTA[(CTJ + (-'144)(8?11 'H’:ll |)+(ep145)2]

These expressions show that the concentration of stress and electric field can be induced
independently by the mechanical or the electrical load. For the case of a permeable hole
(c'y = 0), the stress concentration, ¢}(a.0)/t.. is two, and is independent of the applied
electric field. At the same time, the electric field concentration becomes

2[(eYs)* +clieth]
AMEYN +el) ()’

E)Y(a.0) = E,. (22)

In the limit of diclectric constant for the matrix becoming much greater than that of the
inclusion, £M > &!,. the clectric ficld concentration approaches two just as in Case 1.

Case 4
Piczoclectric incluston in piczoclectric matrix. In this most general case, the stress and
electric ficld concentration become

M M
cish, +efsd
0% (a,0) = [t‘n(l. +else + L,,T”_I]
M M
chub +elsd
v?f(tl.n/2)=a_5y=l:65"4a.+e?‘501~-*——“ 'az = lJ

EY(a.0) = E) = —y, (23)

where ay, by, ¢\, d, and g, are given in eqn (12). It is interesting to note that a uniform
stress field results when the elastic constant and the piezoelectric constant are the same for
the inclusion and the matrix. However, a uniform electric field results only when all three
constants (elastic, dielectric and piczoelectric) are matched. Stress concentrations in the
matrixat 0 =0 and 0 = n/2 with 1, = Sx 10" Nm~%and E, = 10% 0, —10°Vm~"' are
respectively plotted in Figs 6(a,b) as a function of the ratio of piezoelectric constants,
eM/els, while letting e =y =3.53x 10" Nm=2 el =¢l, = 1.5Ix10°*C V- 'm~!
and e}5 = 10.0 C m~2 The negative electric field implies the reversal of the applied field
and the negative piezoelectric constant implies the reversal of the poling direction. As plots
indicate, the stress concentration can be greater than two (maximum limit for purely elastic
casc) when an electric ficld is applicd. In Fig. 7(a), the electric field concentration is plotted
as a function of the ratio of dielectric constants for the matrix and the inclusion while
holding ¢}y = cls =3.53x 10" Nm-2 efi=els=170Cm-2and &}, = 1.5 x 10" C
V-'"m~". It is shown that the mechanical load has no effect on the electric field concen-
tration, which approaches two for a large ¢)i/e}, ratio. The effect of the piezoelectric
constant on electric field concentration is plotted in Fig. 7(b). Here too it is shown that the
electric field concentration can be greater than two (maximum limit for purely electrical
case) when a mechanical load is applied.
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e:‘_,,/e',_,,
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Fig. 6. Stress concentration at (a) § =0, (b) ¢ = n/2 for piczoclectric inclusion in piezoelectric
matrix case.

A more interesting phenomenon can be observed, for example, when we let e} = ¢!
(1720 Cm % and e} =&}, (1.51 x10"* C V™' m~"). In this case, the electric field in the
matrix at § = 0 and in the inclusion is

At e, s(chy— )+ E, (Nt chadleis +csser)]

) 24
CT4[46’75+2(C§&+CL4)51|] @9

' (a,0) = E, =

Figure 8(a) with ¢y, = 3.53 x 10'° N-m~ ?shows that the electric ficld concentration increases
dramatically as the shear modulus of the piezoelectric matrix becomes smaller. This is not
surprising in examining the expression given in eqn (24), which contains the ¢} term in the

denominator.
Similarly, a high electric field concentration behavior can be observed when we let
Mo=cy (3.53x 10" N m~?), and e} =&}, (1.51x 107* C V' m~"). The electric field

concentration for this case is
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M, 0) = £ = (23)

One can maximize the electric field concentration by minimizing the denominator. This can
be achieved by letting the magnitude of piczoelectric constants for the inclusion and the
matrix be the same but opposite in sign (same material but poled in opposite directions)
such that e} +e!; = 0. Electric ficld induced in the inclusion when the mechanical load of
1, = —10° N m~*is applicd is shown in Fig. 8(b), with ¢}5 = 17 C m ™. Plots show a case
where either the elastic constant or the diclectric constant is lowered by a factor of 10, a
case where both of them arc lowered by a factor of 10, and a case where the piczoclectric
constant is increased by a factor of 10. The figure shows high clectric ficld concentration at
eYy/els = — 1. At this ratio, in the absence of an applied electric ficld (£, = 0), the clectric
field concentration becomes

€ys

Eg"(a,O) = E: = —
’ Caa€yy

(26)

This shows that we can increase the induced electric field by decreasing the elastic and

SAS 29:19-6
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Fig. 8. High electric ficld concentration when (a) ¢fy/¢', is small, (b) e¥, = —e!,. and the elastic

and the dielectric constants are lowered by an order of magnitude.

dielectric constants and increasing the piezoelectric constant as Fig. 8(b) demonstrates. If
we can fabricate piezoelectric materials with lower elastic and dielectric constants but a
higher piezoelectric constant than what is currently available, then it is feasible that this
phenomenon can be utilized to build a very sensitive sensor. It is to be emphasized that this
phenomenon occurs for the piezoelectric matrix—piezoelectric inclusion composite system
only when ey = —¢! s (matrix and inclusion poled in opposite directions). Solving for E,
and y., in terms of ¢,, and D, and letting D, = 0, we can find the electric field induced in a
homogeneous piezoelectric material due to a mechanical load :

s

EY = -

27

5
€5+ Caukyy

The coefficient multiplying t, is effectively a g, constant (a piezoelectric constant that
relates stress to electric field) that cannot be made arbitrarily large by decreasing ¢4, and
£,, because we have the ¢, term in the denominator. The ratio of the mechanically induced
electric fields in an oppositely poled inclusion and a homogeneous piezoelectric material is
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2
E, €is

7= (28)

Caa€yy

Substituting in values for typical piczoceramics, the above expression shows that oppositely
poled matrix-inclusion configuration exhibits about 50% higher sensitivity than a homo-
geneous material.

PATH-INDEPENDENT M-INTEGRAL

The path-independent M-integral, one of the three conservation laws arising in linear
elastostatics. was discovered independently by Giinther (1962) and Knowles and Sternberg
(1972). It was later interpreted by Budiansky and Rice (1973) to be the energy-release rate
for a self-similarly expanding defect completely enclosed by the contour of the integral. We
can generalize this path-independent integral to include piezoelectric effect by employing a
simple method introduced in Eischen and Herrmann (1987). Following their method of
taking divergence of the moment of the Lagrangian density (in this case electric enthalpy
density /), we obtain

-2
§ [hxknk -l U Xk + Dknk E, X, — (%“) (’k“k + Dk e d’ )] ds‘ (29)
Al

where n = 2 for two dimensions and n = 3 for three dimensions, ¢, = a;n, is the traction
vector, and n, is the outer unit normal to the surface S. Evaluating this expression on a
contour surrounding the inclusion and taking various limits on the material parameters we
obtain the following results.

Case |
Elastic diclectric inclusion in elastic diclectric matrix. By letting e} = e} = 0, we can
decouple the mechanical and electrical fields and obtain

(30)

M= Znaz[ (c'r‘—cvll-t) 2 Eﬂ(ﬂl““ﬂn) '2]

"'-1“4(5'?4""'54) * (Ellwl +£l|1) *

The first term represents the change in the total elastic energy as the inclusion expands self-
similarly under the mechanical load. The second term represents the release of the total
clectrical encrgy as the inclusion expands self-similarly under the electrical load. For the
mechanical case, the energy released is positive when the matrix is stiffer than the inclusion,
indicating that the system prelers (the total system energy is lower) to have a bigger inclusion
when the inclusion is softer. However, in the electrical case, the system prefers to have a
smaller inclusion when the dielectric constant of the matrix is greater than that of the
inclusion. This agrees with the well known electrostatics theory that the total electrical
energy of the system decreases as the effective dielectric constants increase. This phenom-
enon is also observed in crack analysis, which showed that the electric field tends to retard
the crack growth (Pak, 1990a). This effect can be demonstrated in a simple experiment in
which a dielectric slab partially inserted between two charged parallel capacitor plates gets
drawn in to fill the remaining gap, increasing the overall effective dielectric constant of the
capacitor (Halliday and Resnick, 1966). [t is interesting to note that the mechanical energy-

release rate is at a maximum when ¢} = (ﬁ+ s, and the electrical energy-release rate
is maximum when &)} = (ﬁ— De! ).
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Cuse 2
. A - i ! - ; ; M : N
Impcrmubl; hole (¢i, = 0. ¢}. = 0. &', = 0) in piczoelectric matrix. Since we have
shown that the impermeable boundary condition at the rim of the hole is a good approxi-
mation. we can evaluate the M-integral using the solution for an impermeable hole in a
piezoelectric matrix. For this case, we obtain

] A =2 My, M My
—nat T, —ES ey +ethe )
M= T S R (31

Ciy

Again we observe that the electric field effect counteracts the elastic effect and tends to
inhibit self-similar growth of the hole. One is reminded that this force is not an actual
force acting on the material but rather a generalized thermodynamic force acting on the
configurational defect such as a hole. However, it may warrant a further study to see
whether this force has a physical manifestation in the surface charges that appear on the
rim of the hole, which may have a net attractive force opposing the hole from getting bigger.
Using typical values for the material constants with r, = 5x 10" N m ™ (maximum tensile
strength for some piezoceramics) and £, = 10" V m ' (near poling field), the negative
electrical term decreases the value of M by about 339,

Cuse 3
Piczoclectric inclusion in piczoclectric matrix. In this general case. the M-integral
becomes

M= 2nfa (Kb e d ) by - ahdy) (32

where the constants are given in egn (12). To study the effects of cach material parameters
on the energy-release rate, the M-integral is plotted in Figs 9(a ¢) for the cases of applicd
mechanical load, electrical load, and both mechanical and clectrical loads. The same
material constants are used as in the stress and clectric tield concentration study considered
in the previous section. Figures Y(a,¢) clearly demonstrate the point that the material
prefers 1o have lurger, clastically soft (more compliant) and larger, clectrically soft (more
polarizable) inclusion.

As should be the case, the value of the M-integral is zero when evaluated on a contour
inside the inclusion where all the ficlds are constant und are independent of the characteristic

length .

CONCLUDING REMARKS

By taking the plane of analysis to be normal to the poling axis of a piczoceramic
material, we were able to analyse the piczoelectric antiplane problem in which a circular
piczoclectric inclusion embedded in a piezoelectric matrix is subjected to a far-field mech-
anical and an clectrical load. Tt was shown that both stress and clectric field concentration
can occur due to the mismatch in the material constants. It was also shown that when an
internal cavity problem in piczoclectric materials is analysed. the impermeable boundary
condition at the interface between the material and the cavity s a good approximation,
provided that the material has strong clectro-clastic coupling and high diclectric constants.
It was shown that even in the static case, “"tuning” of the material constants is required to
produce maximum sensitivity for the piezoelectric composite sensor. The phenomena of
very high electric field concentration that can be induced by tailoring material parameters
is revealed, which can lead to a development of very sensitive sensors. The generalized
path-indcpendent M-integral showed that the material favors larger inclusion under the
mechanical load when the elastic constant of the inclusion is lower than the matrix. However,
in the case of clectric field loading, the material favors smaller inclusion when the dielectric
constant of the inclusion is Iess than that of the matrix. These effects may contribute to



Circular inclusion problem

105N 0.047
0.02 1 - - - - ——
0.00-
.
-0.02 1
M2xa?
-0.04 1
/ —— 1= 5x 107 MR
t (]
............. Eoo= 10° V/m
-0.06 / — el
_ODB 4
0.10 4
-0.12 . r . ————— . x v —
0.5 1.0 15 20 25 a0 s 4.0 45 5.0
M b
culc“
(a)
108N 0.05-
0.004
-0.051
M/2ra?
-0.10
o= 5x 107 M2
2 Ew= 108 V/im
015{ S —_—— .. Ea ‘\
o: \
-0.20 \
0.25 —
-5 -4 3 2 B 0 1 2 3 4
Mgt
815/015
(b)
108N 0.01
0.00 e
—_——— a5 %107 N2
-0.014 R Ena= 108 Vim
M2ra? 0021
003
-0.04
-0.05 . r . . v v r — v v
00 05 10 15 20 25 30 35 40 45 50
M -1
€|II€II
(c)

2417

Fig. 9. Self-similar expansion force as a function of the ratios of (a) clastic constants, (b) piezoclectric

constants, (¢) diclectric constants.
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thermodynamic forces that influence the microstructural evolution and phase trans-
formation in ferroelectric and piezoelectric materials.
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APPENDIX A

Governing equations for a lincar elastic piezoelectric matertal occupying region V bounded by surface S cun
be derived from the following Hamilton's principle (Tiersten, 1969):

-

(5J hdV — J (f,0u,— qp0p) d V' — J (T, 0u,—q.0¢)dS =0, (Al
3 s .y

where f; is the body force, u, is the displacement, g, is the body charge. T, is the applied surface ‘tm’ction. g, 1s the
applied surface charge and ¢ is the electric potential whose negative of the gradient is the clectrie field,

E o= ~d,. (A2)
For linear clastic piczoclectric materials, the electric enthalpy density is expressed as

he, E) = YCouusysuy— Y6, E Ej—ewsu i (A3)

where C,,, are the elastic moduli measured in a constant electric field. ¢, are the dielectric constants measured at
constant strain, ey, are the piezoclectric constants, and s, is the strain tensor,

3, = §(“i,/+"/.i)- (A4)

The variational formulation provides the following results:



Governing field equations,

boundary conditions,

and constitutive equations.

where n, is the outer unit normal vector to S.

Circular inclusion problem

Uan+./; =0 Du =45,

o,m, =T, Din = —q,
oh
‘7 = CyuSu—ewjEer, Di= — 5—5 = €y Su+Ex B
APPENDIX B
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(A5)

(A6)

(A7)

The constitutive relations for poled piezoelectric ceramic with x, as the poling axis are of the form (Berlincourt

et al., 1964):

g XX

Oy

O
Oy

O

[en

So S

¢y 0
¢y 0
e 0
0 cu
0 0
0o 0
0 0
0 0
€y €y

0 0 7
0 0
0 (1]
0 0
Caa 0
0 lew—cin) ]
Eex
cvv
0 e¢5 0 ‘.
ey 00 2,
¢ 0 0 2%,
2,
APPENDIX C

Material propertics for PZT-SH ceramic (Deeg, 1980).

¢, =126x10""Nm™2

e = L5x10°"CV-'m-!,

Permittivity of free space:

Cip=55x10""Nm~?

Sex [0 0 ey]
Sy 0 0 ey
Sz 0 0 ey
2, [0 ey O
2s., es 0 O
2s,, L0 0 0 |
e, 0 O07(E.
+10 £, 0[{E;.
0 0 e,JlE

Ciy=53x10""Nm~?

6o =885x10""CV-'m~".

E(
E, (B1)
E,

(B2)

¢y = 1L.7x10'"°Nm~?
€y =353x10Nm™ e, =-65Cm™%, ¢,;=233Cm~?% e,=17.0Cm"?

g3 =130x10*CV-'m~!,



